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We derive two third-order structure function relations for quasi-geostrophic turbul-
ence, one for the forward cascade of potential enstrophy and one for the inverse
cascade of energy. These relations are the counterparts of Kolmovorov’s (1941) four-
fifths law for the third-order longitudinal structure functions of three-dimensional
turbulence.

1. Introduction
Kolmogorov (1941) derived the third-order structure function relation for three-

dimensional isotropic turbulence

〈δuLδuLδuL〉 = − 4
5
εr, (1.1)

where δuL is the difference between the longitudinal velocity component at two points
separated by the vector r, ε is the mean dissipation rate of kinetic energy and 〈. . .〉
designates a mean value. The longitudinal velocity component is the component in
the direction of r. Relation (1.1) is intimately connected with the notion of an energy
flux from small to large wavenumbers in spectral space, that is a forward energy
cascade. The correponding relation in Fourier space states that the spectral energy
flux of kinetic energy from small to large wavenumbers is constant and equal to ε

(see Frisch 1995).
In two-dimensional turbulence, there are two possible cascades (Kraichnan 1970):

a forward cascade of enstrophy, defined as half the square of vorticity, and an inverse
cascade of kinetic energy. For the forward enstrophy cascade the counterpart of (1.1)
can be written as (Lindborg 1996)

〈δuLδωδω〉 = −2εωr, (1.2)

where ω is the vorticity and εω is the dissipation of enstrophy. Under the assumption
of isotropy it can be shown that the following relations hold (Lindborg 1999):

〈δuLδωδω〉 = − ∇2(〈δuLδuLδuL〉 + 〈δuLδuT δuT 〉), (1.3)

〈δuLδuT δuT 〉 =
r

3

d

dr
〈δuLδuLδuL〉, (1.4)

where T designates the transverse direction, which is perpendicular to r. By using
(1.3) and (1.4) relation (1.2) can be integrated to yield (Lindborg 1999)

〈δuLδuLδuL〉 = 1
8
εωr3, (1.5)

in the enstrophy inertial range of separation distances. Relation (1.5) has been repro-
duced in numerical simulations by Lindborg & Alvelius (2000) and Babiano & Dubos
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(2005). For the two-dimensional inverse energy cascade the counterpart of
Kolmogorov’s relation (1.1) can be written as (Lindborg 1999)

〈δuLδuLδuL〉 = 3
2
Pr, (1.6)

where P is the energy power input at small scales. This relation has been reproduced
in numerical simulations by Bofetta, Celani & Vergassola (2000) and Babiano &
Dubos (2005). In the two-dimensional inverse energy cascade range the third-order
structure function is thus related to a small-scale energy source injecting energy into
the system at a rate P , while in the three-dimensional forward cascade range it is
related to a small-scale energy sink draining the system of energy at a rate ε. The
minus sign in the three-dimensional relation (1.1) implies that energy is flowing in
the direction from small to large wavenumbers in spectral space, while the plus sign
in the two-dimensional relation (1.6) implies that energy is flowing in the opposite
direction.

Quasi-geostrophic (QG) turbulence (Charney 1971) is similar to two-dimensional
turbulence in that there are two inviscidly conserved quantities: potential enstrophy,
defined as half the square of potential vorticity, and total energy. There are two
possible cascade ranges corresponding to these two invariants: the forward potential
enstrophy cascade range and the inverse energy cascade range. Just as in two-
dimensional turbulence we would thus expect that there are two counterparts of
Kolmogorov’s relation: one for the forward enstrophy cascade and one for the inverse
energy cascade. Nevertheless, QG turbulence is inherently three-dimensional, which
has been demonstrated in numerical simulations by McWilliams, Weiss & Yavneh
(1994). The ratio between the vertical and the horizontal length scale is typically of
the order of f/N , where f is the Coriolis parameter and N is the Brunt–Väisälä
frequency. This fact led Charney (1971) to introduce a stretched vertical coordinate
z̃ = (N/f )z, and the assumption of isotropy in the coordinates x, y, z̃, where x, y, z

refer to a traditional Cartesian system. It may be thought that isotropy in this sense
would imply that the QG counterpart of Kolmogorov’s relation (1.1) should have a
form where the left-hand side includes the three-dimensional longitudinal velocity,
which generally has a component in the vertical direction, and where the right-hand
side is linearly dependent on the three-dimensional separation distance. Kurien, Smith
& Wingate (2006) have recently suggested that the QG counterpart of (1.1) in the
potential enstrophy cascade range should have such a form. However, it can be argued
that this cannot be the case. The third-order structure functions on the left-hand sides
of (1.1), (1.2) and (1.6) originate from the nonlinear advective terms in the equations
of motion. In the dynamic equation for QG turbulence the leading-order advective
terms do not contain any vertical velocity component or any derivative with respect
to the vertical. Therefore, the QG third-order structure function relations will look
rather similar to the two-dimensional relations. In this paper, we shall briefly derive
the QG relations.

2. Third-order structure function relations
2.1. Forward potential enstrophy cascade range

The inviscid QG equation for potential vorticity, q , can be written as

∂q

∂t
+ uh · ∇hq = 0, (2.1)

where uh is the horizontal velocity and ∇h is the horizontal gradient operator. The
dynamic equation for the two-point correlation, 〈qq ′〉, of homogeneous QG turbulence
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can be derived from (2.1) by standard means (see standard textbooks like Batchelor
1953 or Monin & Yaglom 1975). A primed quantity should here be measured at
a point separated by the vector r from the point where an unprimed quantity is
measured. Spatial homogeneity implies that two-point correlations depend only on
the separation vector r. In the homogeneous case the inviscid dynamic equation for
〈qq ′〉 is found to be

∂

∂t
〈qq ′〉 = ∇hr

· 〈uhqq ′ − u′
hq

′q〉. (2.2)

For QG turbulence we have

∇h · uh = 0. (2.3)

Using this relation and the property of spatial homogeneity it is straightforward to
rewrite (2.2) as

∂

∂t
〈qq〉 − 1

2

∂

∂t
〈δqδq〉 =

1

2
∇hr

· 〈δuhδqδq〉, (2.4)

where δq = q ′ − q and δuh = u′
h − uh. We now assume that there is a small-scale pot-

ential enstrophy sink, which requires that there exists a dissipative force. Irrespective
of the nature of this force the mean potential enstrophy equation can be written as

∂

∂t

〈qq

2

〉
= −εq, (2.5)

where εq is the dissipation rate of mean potential enstrophy. Substituting this
expression into (2.4) and assuming that the turbulence is in a state of quasi-stationarity
so that the second term on the left-hand side of (2.4) can be neglected, we find

∇hr
· 〈δuhδqδq〉 = −4εq. (2.6)

This relation is expected to be valid in a range of separation distances which are
sufficiently large for viscous forces to be negligible and at the same time sufficiently
small for the assumption of quasi-stationarity to be valid. If this range is sufficiently
broad it is justified to integrate the equation from zero horizontal separation out to
a horizontal separation which is well inside this range. Assuming axisymmetry and
introducing cylindrical coordinates we can integrate (2.6) to

〈δuρδqδq〉(ρ, rz) = −2εqρ, (2.7)

where ρ =
√

(x ′ − x)2 + (y ′ − y)2, rz = z′−z and δuρ is the velocity difference compon-
tent in the same direction as the projection of r onto the horizontal plane. Here, rz can
be assumed to be measured in units which are stretched by a factor N/f . Relation (2.7)
can be assumed to be approximately valid if the separation distance is considerably
larger than a viscous length scale and at the same time if ρ � L and |rz| � L, where
L is the large horizontal length scale of the quasi-geostrophic vortices, and where it
should be remembered that rz is measured in stretched units.

2.2. Inverse energy cascade range

To derive the third-order structure function relation for the inverse energy cascade
we use the streamfunction formulation (Charney 1971) of the QG equations. Using
Charney coordinates and omitting the tilde over the stretched vertical coordinate we
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can write

q = ∇2Ψ, (2.8)

uh = ez × ∇hΨ, (2.9)

b = N
∂Ψ

∂z
, (2.10)

where Ψ is the streamfunction, ez is the vertical unit vector and b is the buoyancy,
that is the normalized density fluctuation away from the mean stratification. The
inviscid potential vorticity equation (2.1) can now be written as

∇ ·
(

∂∇Ψ

∂t
+ uh · ∇h∇Ψ

)
= 0, (2.11)

from which follows that

∂∇Ψ

∂t
+ uh · ∇h∇Ψ = ∇ × Φ, (2.12)

where Φ is a vector potential which can be taken as divergence free without loss of
generality. A Poisson equation for the vector potential can be obtained by taking the
curl of (2.12), which eliminates the time derivative. Under the assumption of spatial
homogeneity it is straightforward to derive the dynamic equation for the two-point
correlation 〈∇Ψ · ∇′Ψ ′〉:

∂

∂t
〈∇Ψ · ∇′Ψ ′〉 = ∇hr

· 〈uh∇Ψ · ∇′Ψ ′ − u′
h∇′Ψ ′ · ∇Ψ 〉 + 〈∇′ × Φ ′ · ∇Ψ + ∇ × Φ · ∇′Ψ ′〉.

(2.13)
The last term cancels by homogeneity,

〈∇′ × Φ ′ · ∇Ψ + ∇ × Φ · ∇′Ψ ′〉 = −〈Φ ′ · ∇ × ∇Ψ + Φ · ∇′ × ∇′Ψ ′〉 = 0. (2.14)

We now rewrite (2.13) in a similar way as we rewrote (2.2),

∂

∂t
〈∇Ψ · ∇Ψ 〉 − 1

2

∂

∂t
〈δ∇Ψ · δ∇Ψ 〉 =

1

2
∇hr

· 〈δuhδ∇Ψ · δ∇Ψ 〉, (2.15)

and introduce a small-scale force injecting energy into the system at a rate P . The
mean energy equation can then be written as

∂

∂t

〈
∇Ψ · ∇Ψ

2

〉
= P. (2.16)

Substituiting this expression into (2.15) and neglecting the second term on the left-
hand side we find

∇hr
· 〈δuhδ∇Ψ · δ∇Ψ 〉 = 4P. (2.17)

In a similar way as we integrated (2.6) we can integrate (2.17) to yield

〈δuρδ∇Ψ · δ∇Ψ 〉(ρ, rz) = 〈δuρδuh · δuh〉(ρ, rz) +
1

N2
〈δuρδb δb〉(ρ, rz) = 2Pρ. (2.18)

This relation is expected to hold for separation distances which are larger than the
characteristic length scale of the forcing and when |rz| � l and ρ � l, where l is the
largest vertical length scale of the system measured in units which are stretched by
a factor N/f . The first term on the left-hand side of the second equality in (2.18)
represents the flux of kinetic energy from small to large scales and the second term
represents the flux of potential energy. Charney (1971) hypothesized that there should
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be equipartition of energy between potential energy and the energy content in each
of the two horizontal velocity components. If this hypothesis is extended to energy
fluxes, the second term should be half the first term. Furthermore, for axisymmetric
QG turbulence we have

〈δuρδuφδuφ〉 =
ρ

3

∂

∂ρ
〈δuρδuρδuρ〉, (2.19)

a relation which can be derived in exactly in the same way as the corresponding
two-dimensional relation (1.4) (see Lindborg 1999). Here, the subscript φ refers to a
direction in the horizontal plane which is orthogonal to the direction indicated by the
subscript ρ, just as in the traditional cylindrical coordinate formulation. Using this
relation and the equipartition assumption we find

〈δuρδuρδuρ〉(ρ, rz) = Pρ, (2.20)

1

N2
〈δuρδb δb〉(ρ, rz) =

2

3
Pρ, (2.21)

in the inverse energy cascade range of QG turbulence.

3. Conclusions
It is evident that the assumption of isotropy in the sense of Charney (1971)

cannot be applied in the derivation of the third-order structure function relations
for QG turbulence, since the advective terms of the QG equations do not contain
any terms including the vertical velocity or the vertical differential operator. Even
more generally, it can be argued that the concept of Charney isotropy has serious
limitations. It can be given a reasonable interpretation when it is applied to scalar
quantities, such as the second-order potential vorticity structure function 〈δqδq〉.
For scalar quantities Charney isotropy means that they are functions only of r̃ =√

(x ′ − x)2 + (y ′ − y)2 + (z̃′ − z̃)2. For tensor quantities, such as the second-order
velocity structure function, 〈δuδu〉, the concept does not seem to be very fruitful.
The vertical velocity is zero in QG turbulence and for this reason general velocity
correlations cannot be invariant under rotations around non-vertical axes. Third-
order structure functions formed out of the velocity vector and possibly some scalar
quantity are third- or first-rank tensors and for this reason there is no fruitful way to
apply the assumption of Charney isotropy to these quantities. In this paper, we have
instead applied the assumption of axisymmetry to derive the third-order structure
function relations (2.7) for the enstrophy cascade and (2.18) for the energy cascade.
The analysis suggests that the theory of QG turbulence should be formulated under
the constraint of axisymmetry rather than under the stronger constraint of isotropy.

I thank Jim McWilliams and one anonymous reviewer for comments on a previous
version of this manuscript.
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